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TECHNICAL NOTES 

Temperature djstributjon in a cylindrical conductor with skin effect 
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INTRODUCTION 

THE PROBLEM of heat transfer in electrical conductors with 
skin effect was examined a long time aga by Strutt [I]. This 
author considered particular applications occurring in the 
treatment of electric cables, lines and conductive heating. 
His method was based on solving analytically, a linear prob- 
lem but by considering asymptotic limits of small and large 
skin effect only. The same problem has been re-examined 
more recently by Mytkowski and Rozanski i2] who solved 
the linear problem for an arbitrary skin effect using a numeri- 
cal method. We may also mention the work of Rolicz [3f 
who solved the linear heat transfer equation for the case of 
an electrical alternating current in a cylind~cal conductor 
but without taking into account explicitly the skin effect. In 
a series of recent papers 14-61 we have investigated the prob- 
lem of non-linear heat transfer in cylindrical conductors with 
a constant current density, and hence without introducing 
the skin effect phenomenon. Our purpose was to investigate 
the influence ofthe temperature dependence of various physi- 
cal parameters such as specific heat, thermal conductivity, 
electrical resistivity, etc. on the temperature distribution in 
cylindrical conductors both in space and time. Here we would 
like to extend this work to cases where the current density is 
a complex quantity and, therefore, introducing the skin 
effect. We will examine the linear problem only, where the 
physical parameters mentions above do not depend on 
tem~rature. The reasml is that, in order to solve the non- 
linear problem of the temperature distributjon one needs the 
solution of the corresponding linear case. Our method is 
based on an analytical solution of the temperature dis- 
tribution equation with arbitrary values of the skin effect. 

In the linear steady-state problem, we need to solve the 
following simple equation : 

where 1, p and J are the thermal conductivity, the electrical 
resistivity and the current density in the z-direction, respect- 
ively. Here T represents the increase of temperature above 
the ambient temperature, and r the distance from the centre 
line of the conductor. In our previous studies, we always 
assumed J to be constant, inde~ndent of r. Here we note 
the maximum current density by J, and we assume that it is 
a complex quantity and a function of r. In this case equation 
(1) becomes [3] 

where T represents the mean tempemture as defined by 
Roiicz [3]. 

This leads us to introduce the so-called skin effect phenom- 
enon. Using Maxwell’s equations, one can obtain the fol- 
lowing differential equation for J, : 

(3) 

where 5 is a complex parameter that depends on the physical 
properties of the system, as well as on the current’s frequency 
f: Hence, one must bear in mind that J,,, may be a complex 
quantity. The problem now is to solve both equations (2) 
and (3) using specific boundary conditions. These are chosen 
as follows : 

dT 

-G ,i-f* 
= - ; T(r,) 

where r,, is the radius of the conductor and E the convective 
heat transfer coefficient. For equation (3), governing the 
variation with r of the complex current density, one uses 
Ampere’s law to obtain the corresponding boundary 
condition. The problem presented here was examined in ref. 
[2] where the following equation was solved : 

where I, is the maxima current, y - p- ’ is the electrical 
conductivity, p = Znfpy, and p is the magnetic permeability. 
The sue&l functions involved in this eauation are defined 
as (71’ 

ber,x= C Lc (- V(GY+** cos 3,4(v+2n)n 
“=O n!l-(v+n+l) (7) 

m bei, x = c (- V(x/2)‘~ sin 3/@+ 2@ 
n=O n!r(v+72+l) 

(v = 0, I), 

Equation (6) was solved n~ericajiy in ref. [2], 
In the present work we would like to examine the same 

problem using a different method which leads to a relatively 
simple analytical expression for T(r). The reason for seeking 
such a solution was explained earlier. The next section is 
devoted to the description of the general formalism of our 
method and to specific applications. 

GENERAL FORMALIST AND 
APPLI~ATIGNS 

The general problem of interest in this work is the res- 
olution of the set of equations (2) and (3). For this purpose, 
let us examine first the following equation for an arbitrary 
complex function F(r). 

d2F 1 dF 
~~-t-Fz+~F==O. 

Taking the complex conjugate of each term, denoted by an 
asterisk, one produces the following equation : 

W) 
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We define Letting the general solution for T(r) be 

T(r) = U(r) - L/(r,) + ; Li’@“) 
1 

one obtains 

K(r) = F(r) * P(r) (11) 

dF(r) dF*(r) 
w1 = 7.7 

Multiplying equation (9) by F* and equation (10) by F and 
adding them, one obtains after some rearrangements, the 
following equations : 

d=K 1 dK 
G+Fdr+2uK=2H 

where G( is the real part of 5. 
To proceed further, we assume that the solution can be 

written as 

K(r) = f uznr2’ (15) 
n=O 

H(r) = i b2,rZ” 
n=O 

(16) 

where we have retained the even powers of r only for reasons 
of symmetry. Substituting these expressions into equations 
(13) and (14), collecting the terms having the same powers 
of r, letting G( = 0, and setting a, = 1, b, = 0 and b, = 15 1 2/4 
leads to the following recurrence relations for the constant 
coefficient defined in equations (15) and (16) 

(2n+4)2~,,+, = 2b,+, 

(2n+2)(2n+4)b:,+> = 21612a,,. 

Using these relations in equation (15) it gives 

(17a) 

(17b) 

1 

K(r) = 1 + *$, (n!)‘(2n - l)!! x (18) 

Here we do not write H(r) because it is not needed and 
n!! = 1.3.5, .Let us now return to our problem of solving 
equation (2) for the temperature distribution. It can be writ- 
ten explicitly as 

$+;g+rK(r)=O 

where r is given by 

r=P IliP 1 

21 m (ber’Jpr,)*+(bei’J~r,)~ 
(20) 

and I,,, is the magnitude of the current, p = 151. This is a 
classical second-order linear differential equation which can 
be solved by a standard method. We observe that the general 
solution of the homogeneous equation can be written as 

C,+C,lnr 

where C, and C2 are constants. Moreover, the particular 
solution of the non-homogeneous equation can be assumed 
to be of the form 

U(r) = i uz,rZn. (21) 
u= I 

Using the boundary condition in equation (5), one obtains 
the constant C, as follows : 

C, = - U(r,)+ a U’(r,) [ 1 . (22) 
One also obtains C, = 0 because the temperature must 
remain finite at r = 0 (see equation (4)). 

(23) 

T(r) = r raA(r,/R)+ t:B(r,/R)-rzA(r/R) 
L 1 

(24) 

where R = 2i,4/p”2 and the functions A(r/R), B(r/R) are 
defined by 

(25) 

B(r/R) = 0.5+ f 
n=, (n!)3(2n-:)!!(4n+2)(r’R)4”’ 

Applicutions 
To illustrate these results we have considered the case of 

a cylindrical conductor made of tungsten and characterized 
by the following parameters [8] : 

rg = 3x IO-‘m 

p = 92 x IOdXRm at 3000K 

I=95Wm-‘K-’ at 3000K 

f = 900 kHz and 50 kHz 

J, = 1115.5,/2A and 1930.842A. 

Figure 1 displays the variation of the temperature as a func- 
tion of r for two different cases r,,,/p = 8.3376 and 1.965 
corresponding to a strong (curve 1) and weak (curve 2) skin 
effect, respectively. One observes that in the case of the 
strong skin effect, the temperature within the conductor 
drops rapidly near the surface. 

As a test of our result in equation (23), we have solved 
numerically equation (2) using the Runge-Kutta method 
[4,5]. The comparison between the analytical and numerical 
solutions shows a good agreement as one can observe from 
Fig. 1. 

CONCLUSION 

The present work is devoted to the study of linear heat 
transfer problems in cylindrical conductors with arbitrary 

3or--- -1 

r [ml 

FIG. 1. The variation of the temperature increase T as a 
function of r in two cases : curve 1 ,f= 900 kHz strong skin 
effect ; curve 2,f= 50 kHz weak skin effect. Here the surface 
temperatures of the conductor are chosen as T,,I = 3003.06 K 

for curve 1 and Ts,2 = 3003.22 K for curve 2. 
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skin effect. Its purpose is essentially to develop an analytical 3. P. Rolicz, Temperature and stresses in a cylindrical con- 

method for solving such problems, because the analytical ductor with alternating current, J. Appl. Phys. 49(8), 

solution is useful in the treatment of non-linear problems as 43634365 (August 1978). 

we shall see later. 4. B. Berbar, A. Jordan and M. Benmouna, Steady state 
Dynamical variations of the temperature can also be exam- temperature distribution in a cylindrical electrical con- 

ined within the framework of this theory. These gener- ductor : non-linear effects, Revue Phys. Appl. l&677-681 
alizations are currently under investigation and the results (1983). 
will be reoorted elsewhere. 5. A. Jordan. M. Benmouna, A. Borucki and F. Bouayed, 

Transient state temperature distribution in a cylindrical 
electrical conductor : non-linear effects. Revue Phvs. AUDI. 
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INTRODUCTION 

WITH INCREASING emphasis on economic energy saving con- 
siderations, efforts are being made to develop better heat 
transfer surfaces to produce more efficient heat exchange 
equipment. Internal roughness such as sand-grain textures 
[1, 21, internal ribbing [3, 41 and spirally corrugated tube 
surfaces [5] have been studied or applied with varying degrees 
of success. 

Helically coiled wires [6] or ribbons, fitted tightly inside 
smooth tubes, give a considerable increase in heat transfer 
rate without a significant increase in friction power, as these 
tubes produce some helical flow at the periphery of flow, 
superimposed upon the main axial flow, and thus influence 
the velocity distribution, the turbulence level and the tur- 
bulent wall shear. As no previous study has been made on 
smooth tubes, roughened with coiled ribbons, the present 
investigation was carried out to study their frictional and 
heat transfer performance and develop suitable correlations 
for momentum and heat transfer roughness functions, based 
on friction and heat transfer similarity laws. 

THEORETICAL BACKGROUND 

Nikuradse [I] used the law of the wall concept and 
obtained the turbulent flow velocity distributions for the 
smooth and rough tubes 

u+ = 2.5 In y+ + 5.5 (smooth tube) (1) 

U+ = 2.51n(y/h)+R(h+) (rough tube). (2) 

On integration over the tube cross-section, equation (2) gives 

R(h+) = J(2/f)+2,51n (2h/D)+3.75. (3) 

For the fully rough region (h+ > 70) R(h+) attained a con- 
stant value of 8.48 for the sand-grain rough tubes of Niku- 
radse [I] and Dipprey and Sabersky [2]. Results of turbulent 
friction factors expressed as R(h+) were successfully cor- 
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related by Webb et al. [3] for tubes with transverse ribs, and 
by Ganeshan and Raja Rao [5] for spirally corrugated tubes. 

Dipprey and Sabersky [2] first developed a heat transfer 
similarity law, analogous to the friction similarity law and 
correlated their heat transfer results in terms of Prandtl 
number and roughness Reynolds number 

G@+,f’r) = [ (&-- I)IJ(f/2)+R(h’)] 

= 5.19(Pr)0.44(h+)0 2”. (4) 

The recent work of Ganeshan and Raja Rao [5] and Gee and 
Webb [4] indicates that the heat transfer similarity law can 
be applied to other rough surfaces, having discrete two- 
dimensional roughness elements. 

EXPERIMENTAL WORK 

The three helically coiled ribbons were fabricated by wind- 
ing a long strip of copper sheet (0.72 mm thick and 4.5 mm 
wide) on a cylindrical rod of 23.5 mm diameter, using a 
precision lathe. Thin line impressions of the desired helical 
paths were engraved on the rods, before the winding oper- 
ations The pitch of the coiled ribbons used was 41, 21 and 
11 mm, corresponding to helix angles of 51”, 66” and 79”, 
respectively. A cut section of the smooth tube, roughened by 
a typical coiled ribbon is shown in Fig. 1, and geometrical 
properties of the tubes are listed in Table 1. The ribbon 
coils, when introduced into the smooth tube, fitted tightly, 
ensuring close contact between the ribbon surface and tube 
wall. 

The apparatus for this work is the same as used in our 
earlier study [6], and consisted of a 2050 mm long double- 
pipe heat exchanger, along with auxiliary equipment for 
circulation of hot (test) liquid on the tube side, and cold 
water on the annulus side, in closed loops. Water and 40% 
aqueous glycerol were used as the test liquids. 


